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ABSTRACT

This report describes the kernel density estimation technique and its application to range safety
applications. The kernel density estimation technique is shown to be suitable for developing
probabilistic risk assessments from ground impact data generated for guided weapon systems via
Monte Carlo simulations. An advantage of this technique is that it can be used to predict the
probability density function for minimal simulated ground impacts with apparently random
distribution. Several techniques have been proposed to ameliorate the identified limitations of the
kernel density estimation technique, including a covariant form for two-dimensional data.
Analysis of the available simulated guided weapon ground impact data has identified that
around six hundred impact points are sufficient for generating a probability distribution.
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Range Safety Application of Kernel Density Estimation

Executive Summary

The Range Safety Template Toolkit (RSTT) development project undertaken by Weapons
Systems Division of the Defence, Science and Technology Organisation (DSTO) was
scoped to develop probabilistic risk hazard analysis capabilities for guided weapon and
sounding rocket trials. The Centre for Defence Communications and Information
Networking (CDCIN), formerly known as TRC Mathematical Modelling (TRC), at the
University of Adelaide was contracted to undertake research and development in support
of the RSTT project. To meet the objectives of the RSTT project, DSTO proposed using
Monte Carlo simulations of specific vehicles (including likely failure response modes) to
generate ground impact data that could be turned into a probability density function. Itis
this final aspect that was the focus of the research and development discussed in this
report.

To support the research and development work, DSTO provided results (including
ground impact data) from Monte Carlo simulations of a generic guided weapon system.
Consultation between DSTO and CDCIN identified a number of essential activities for this
work:

1. Analyse distributions to understand heterogeneous processes.

2. Develop robust estimation methods: Apply EVT (Extreme Value Theory) and other
methods to representative distributions for evaluation of statistical method
effectiveness.

3. Develop an understanding of "typical” impact distribution data supplied by
Weapons Systems Division of DSTO. The data covered a range of missile launch
scenarios and failure modes considered by DSTO to be typical of the data that
might be generated for actual weapons systems.

4. Investigate techniques suitable for generating approximate probability density
functions representing missile impact data.

5. Investigate the convergence properties of those techniques with increasing size of
dataset.

6. Investigate the degree of resolution required to provide impact distributions
meaningful to use in a Range Safety Template Toolkit.

7. Investigate techniques for generating range safety templates for scenarios for
which simulated data are not directly available, more specifically, to investigate
the feasibility of using interpolation techniques for approximating a given scenario
from other scenarios for which data exists.

8. Examine the impact of alternative distance metrics on the quality of the impact
zone interpolation process.



The research and development activities undertaken by by CDCIN and DSTO have:

1.

10.

11.

12.

13.

Qualitatively described the features of impact distribution data that may affect
subsequent statistical modelling.

Defined a technique, specifically, the use of kernel density estimation, for
providing a statistical model of a specific missile impact data set which estimates
the probability density function of the impact distribution. The solution proposed
here is purely data analytic and as such does not allow for the incorporation of any
substantive knowledge.

Defined a technique for combining kernel density estimates corresponding to
different failure modes within a single operational scenario.

Defined a technique for incorporating information on missile Maximum Energy
Boundaries into the analysis so as to refine the impact zone probability density
function.

Defined a technique for using the probability density function together with
population density information to obtain estimated injury rates for a given
scenario.

Defined a technique for using the probability density function together with range
boundary information to obtain an estimate for a missile leaving a given range.

Defined a technique for using the probability density function to determine a
conservative, convex safety exclusion zone with given probability of the missile
leaving the zone.

Defined an approximate technique for defining a conservative exclusion zone
derived from probability density functions of different scenarios.

Found that KDE resolutions beyond 16 x 16 and 32 x 32 do not provide
significantly more accurate information and hence 16 x 16 or 32 x 32 resolutions
appear to be suitable for the development of Range Safety Templates.

Found that at least 600 observations (impact data points) should be used in
generating KDEs for a given scenario.

Identified situations in which the Kernel Density Estimation process is not robust,
generally when tight clusters of data points occur within the data set. In such cases
the bandwidth parameters automatically generated by the process tend to be very
small and the KDE generated consequently “erratic”. This report has suggested
one method of dynamic bandwidth calculation to improve the PDF for clustered or
non-normal ground impact distributions.

Described a covariant form the Kernel Density Estimator for two-dimensional data
that robustly predicts the ground impact probability function.

Outlined a numerical approach to ensure computationally accurate and efficient
results are obtained when using the kernel density estimate technique with real
impact data.

The results obtained from the work outlined in this document are essential for the
operation of the Range Safety Template Toolkit. RSTT is a capability for the generation of
probabilistic risk hazard analyses and weapon danger areas for guided weapon and
sounding rocket trials. Due to the large flight ranges of these systems and limited range
space for trials, RSTT and its supporting research are important for ensuring that future
system trials can be practically conducted in Australia. Importantly, the probabilistic
methodologies presented here can potentially be applied to a broad range of applications
that require risk hazard analysis including: ballistic munition testing, aircraft flight, orbital
re-entry, rocket launches and explosive testing.
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1. Introduction

1.1 Background and Purpose

In late 2004 the Defence Science and Technology Organisation (DSTO) of the Australian
Department of Defence initiated development of an advanced, probabilistic range safety
assessment system for guided air missiles. The resulting system is called the Range Safety
Template Toolkit (RSTT). The key output of RSTT is a range safety template, which defines
the evacuation area for a planned trial, also known as a weapon danger area (WDA) or
weapon safety footprint area. WDA is the standard NATO term for such an area.

In designing RSTT, DSTO proposed a template generation methodology based on high
fidelity Monte Carlo simulation of the missile, producing large sets of ground impacts for both
nominal and off-nominal (i.e. failed) missile fly outs. One step in the proposed methodology
required RSTT to generate two-dimensional ground impact probability density functions from
the large sets of ground impact coordinates.

Early experimentation into probabilistic methodologies and Monte Carlo simulation showed
non-Gaussian ground impact scatter was typical for guided weapon systems. The observed
scatter, and limited time and computing resources became the primary constraints for the
DSTO approach. The RSTT development plan therefore called for research and development
(R&D) to be conducted into appropriate statistical techniques for the calculation of probability
distributions, from minimal data sets. As a large project, not all R&D aspects of RSTT
development could be handled internally by DSTO, so this particular task was contracted to a
research centre of the University of Adelaide, the Centre for Defence Communications and
Information Networking (CDCIN), formerly known as TRC Mathematical Modelling (TRC).
The CDCIN team drew on statistics expertise from the University’s Applied Mathematics
department and regularly consulted with the DSTO RSTT development team on the direction
of their research.

Three client reports were produced by CDCIN over a three year period from January 2005 to
February 2008, proposing an initial solution to the problem and then examining various issues
in the application of that solution. This DSTO Report presents for public release the
consolidated analysis and findings of this R&D into the problem of calculating probability
distributions from minimal data sets for range safety purposes.
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1.2 Scope

Representative unclassified sets of simulated ground impact data were generated by DSTO
and provided to the CDCIN team as the basis for their R&D activities. The activities
undertaken by the team included the following:

Phase 1:
1. Analyse distributions to understand heterogeneous processes, developing an
understanding of "typical” impact distribution data generated by DSTO.

2. Develop robust estimation methods: Investigated EVT (Extreme Value Theory) and
other methods with representative distributions for evaluation of statistical method
effectiveness.

3. Investigated database reduction and performance improvement methods: To make the
RSTT as computationally efficient as possible, investigated database reduction and
performance methods for later implementation in software.

Phase 2:
1. Investigated the convergence properties of probability density function estimation
techniques with increasing size of dataset.

2. Investigated the degree of resolution required to provide impact distributions
meaningful to use in RSTT.

Phase 3:
1. Identified issues associated with “clustering” of points and their impact on Kernel
Density Estimation and bandwidth selection and provided a process for addressing
these issues.

1.3 Report structure

This report is structured as follows:
e A table of acronyms precedes the Introduction

e Section 1, this section, introduces the report.

e Sections 2, 3 and 4 provide the outcome of the CDCIN activities undertaken in their
three phases of work respectively, as described above in the Scope section above.

e Section 5 outlines subsequent analysis performed at DSTO into the application of hon-
diagonal bandwidth matrices.

e Section 6 provides a conclusion to the report and recommendations for further
investigation.

e Appendix A lists the data provided to CDCIN for their first phase of work.
o Appendix B provides a series of plots to supplement Section 2.

The references appear following the conclusion.
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2. Data Analysis and Development of Robust Estimation
Procedures

In this section we report against the following, Phase 1, activities:
1. Analysed distribution to understand heterogeneous processes, developing an
understanding of “typical” impact distribution data generated by DSTO.

2. Develop robust estimation methods: Investigated EVT (Extreme Value Theory) and
other methods with representative distributions for evaluation of statistical method
effectiveness.

The data generated by DSTO covered a range of missile launch scenarios and failure modes
considered to be typical of the data that might be generated for actual weapons systems.

The completion of these activities involved the following steps:
1. Investigation of techniques suitable for generating approximate probability density
functions modelling missile impact data.

2. Foragiven data set, investigation of techniques for generating "boundaries" on range
sites that result in a probability of injury less than pre-determined safety levels.

2.1 Data Analysis

2.1.1 The Data

Weapons Systems Division of DSTO generated the data files listed in Appendix A, covering a
range of different operational scenarios.

We define a scenario to be a set of simulation results derived using the same input data except
for the type of failure, if any, that takes place and the seeds of noise sources. For example, two
sets of simulation results corresponding to “no failures occurring” and “locking of fins at
some time during the missile flight” are from the same scenario if the launcher altitude and
velocity and target altitude and velocity are unchanged between the two data sets. If the
launcher altitudes were different, the results would be said to derive from different scenarios.

For a given scenario and failure mode, the variables used from the data generated by DSTO
contain information described in Table 1.
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Table 1:  Description of variables used in analysis

Variable Description

SuccessfullnterceptTime The expected time taken for a successful intercept of the
target. Note that this column was added to each dataset by
TRC based on the times given in the written
documentation provided by DSTO. The times provided
were to two significant figures.

Input: FailureTime The (random) time at which the failure occurred during
the flight of the missile.

Output: ImpactPointX The x-coordinate of the impact point of the missile.

Output: ImpactPointY The y-coordinate of the impact point of the missile.

In order to illustrate the proposed techniques of analysis of the missile impact data, these
techniques will be demonstrated on the data provided for a particular scenario. The details of
this scenario, as provided by DSTO, are given in Table 2. Unless otherwise stated, all plots
provided in this section correspond to this scenario. Other scenarios were analysed.

Table 2:  Details of the scenario to be used to illustrate the proposed techniques of analysis

Parameter Value

Launcher and target altitude 1500 metres

Launcher and target speed 400 metres/second

Launcher flight direction North

Target flight direction South-West

Target location 8km North, 2km East of launcher location
Target manoeuvre None

Figure 1 shows a scatter plot of 20,000 impact points for this scenario, where no failure occurs
during the flight of the missile. These data points were provided in the file
‘nofault_ggm_000_1-20000.csv’.

Impact Point Distribution

i

T T T T

5000 10000 15000 20000

Dustance fram migsil launch {m)

Figure 1:  Impact distribution for scenario in Table 2 where no failure occurs (failure mode 0)
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Figure 1 shows that there is a high degree of heterogeneity within the dataset, including two
distinct areas of high impact density, and a considerable amount of dispersion of the impact
points. Discussions with Duncan Fletcher and Robert Graham of Weapons Systems Division
indicate that most of this dispersion is due to the missiles missing the target, and then turning
around to re-attack the target. It can also be seen that the shapes of the areas of high density
are somewhat irregular. A consequence of the high degree of heterogeneity and irregularity is
that this data may not be well modelled by a mixture of bivariate normal distributions. It is of
particular interest that for this scenario, the area of highest density occurs very near the
boundary of the convex hull of the impact points. This may be important in the analysis of this
data since it may cause the chosen method of density estimation to assign considerable
probability density to regions where no impact points have been observed. This is discussed
further in a later section of this report.

Figure 2 shows a scatter plot of 20,000 impact points for the same scenario, where at some
point during the flight of the missile, all actuators lock to zero deflection. This failure occurs at
arandom time that is uniformly distributed on the interval 0-15 seconds. A certain subset of
these impact points has been highlighted in blue. This is explained below. These data are
provided in the file ‘faultset_all_actuators_zeroed_ggm1-20000_6.csv’.

Impact Point Distribution
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Dustance fram migsil launch {m)

Figure 2:  Impact distribution for scenario in Table 2 where all actuators lock to zero deflection
(failure mode 1)

The main features of Figure 2 are similar to those of Figure 1, except that there is a narrow
area of very high impact density around a segment of the launcher trajectory line. This area
corresponds to the subset mentioned above that has been highlighted in blue. Such anareain
a scatterplot of the impact points has been referred to as a “hook” in discussions with
Weapons Systems Division. In this case, the hook appears to be contained entirely within the
impact distribution, unlike the area of high density in Figure 1 which lies on the boundary of
the distribution. There is also a higher degree of dispersion of the impact points in the zero
deflection case than in the no failure case. This may be due to the additional variation
introduced by the randomly generated failure time. As in Figure 1, the areas of high impact
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density are irregular in shape, and this data may not be well modelled by a mixture of
bivariate normal distributions.

It has been determined that the “hook” discussed above consists of cases in which failure
occurs prior to the expected time of intercept. For this scenario, the expected time of intercept
is 7.4 seconds. This hook has been extracted from the dataset according to the failure time, and
is shown in Figure 3.

Impact Point Distribution
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Dustance fram migsile launch {m)

Figure 3:  Impact distribution for pre-intercept failure times from Figure 2

Figure 4 shows the distribution of impact points when failure occurs after time 7.4 seconds.

Impact Point Distribution
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Figure 4: Impact distribution for post-intercept failure times from Figure 2
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Itis clear from Figure 3 and Figure 4 that the distribution of the impact points is very different
when the failure occurs before the time of intended intercept than when it occurs after this
time. Figure 3 shows that if the failure occurs before this time, the resulting distribution
contains very limited dispersion. It appears that in this situation, the missile simply continues
along a trajectory similar to its initial trajectory and eventually impacts the ground. The hook
shown in Figure 3 is clearly a region of high impact density. If this hook is contained entirely
within the envelope of the impact points shown in Figure 4, the chosen method of density
estimation is likely to provide a reasonable estimate near the boundary of the impact
distribution, as internal regions should not affect the boundary regions to any significant
extent. However, as mentioned above, if the hook lies on or outside the boundary of this
envelope, it may cause the chosen method of density estimation to assign considerable
probability density to regions where no impact points have been observed. This will be
discussed further at a later stage of this report.

2.1.2 Major issues in Data Modelling

From the descriptive analysis provided in the previous subsection, we see that the following
major issues need to be addressed by any technique attempting to reasonably model data of
the form provided:

1. The data are heterogeneous. In this case, there are clearly identifiable regions within
the impact zone corresponding to different operational modes. For example, failure
before intended intercept time can result in a tightly defined, highly correlated, impact
zone. Failure after intended intercept time results in a much more widespread impact
distribution, but still having distinct regions of higher density.

2. High density impact zones can occur at the edge of the “impact” envelope (see
Figure 1), or more centrally in the impact envelope (see Figure 2).

For the purposes of developing a RSTT, high density zones central to the impact envelope
may not have to be modelled with great precision. It is more important that the density
estimate correctly estimates the overall probability of impact in those regions.

1. On the other hand, high density, sharply defined regions on the edge of the impact
envelope will require a more careful treatment. Correctly recognising a sharp
boundary may be useful in assessing the risk to immediately adjacent regions.
However, the consequences of incorrectly identifying such a boundary could be severe
and, for this reason, it is important to recognise the limitations of the available data. In
particular, even if a sharp boundary is present in all simulated scenarios, it may not be
possible to predict exactly how that boundary would be affected by small violations of
the scenario assumptions as are bound to occur in practice. For this reason it would be
prudent to allow for a margin well beyond that indicated directly by the data.

2. Atthistime we have not been provided with information on typical Maximum Energy
Boundaries. A Maximum Energy Boundary defines the absolute maximum range of a
missile, in any given direction, as limited by issues such as launch altitude, velocity,
weight and fuel load. Thus, any models developed for the impact distribution of a
missile should be flexible enough to adhere to external limits imposed by a specified
Maximum Energy Boundary.
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3. Finally, in considering models for the data and their interpretations, it is essential to
note that any such modelling assumes the data to be representative of the behaviour of
the physical system. In particular, the variation apparent in the data is due solely to
variation in certain input parameters such as failure time, wind-speed and seeker
noise. The extent to which the data is representative is determined by the extent to
which the variation of the inputs represents the system being modelled. Throughout
this report it is assumed that the data provided are representative of the system
intended by DSTO. Although this assumption is critical, by its nature it cannot be
tested on the basis of the data alone. Therefore it is an assumption rather than a
conclusion of this report that the data are representative of the system intended by
DSTO.

2.2 Techniques for generating PDFs

In the preliminary phase to this project, TRC Mathematical Modelling provided a report on
the use of Extreme Value Theory and its potential application to determining regions
encapsulating a given percentage of likely impact points [1]. Under this approach, precise
modelling of the entire impact area is not required as the focus is on the “edge” of the impact
zone and how far it might extend in any particular direction. In this phase of the project, the
emphasis has changed to enabling the RSTT to compute the expected risk of harm for a given
test template and map of population density. This requires modelling the probability density
function of impacts across the entire impact area and therefore precludes the use of EVT.

In the context of the missile impact distribution, the associated probability density function
assigns to any impact point (x,y) a probability density. An intuitive way of thinking of the
probability density function is as the continuous analogue of the probability mass function. A
higher probability density in a particular region indicates a higher probability of the missile
landing in that region. The integral of a probability density function over all possible impact
points (x,y) is 1. It should be noted, however, that in order to perform the calculations
necessary for this report, such as the calculation of the expected number of casualties, the
estimate of the probability density function is calculated over a discrete grid of values.
Therefore, the density estimate used in the calculations throughout this report is in fact a
probability mass function rather than a probability density function. It should also be noted
that during the process of generating this probability mass function, it is normalised so that
the sum of the probabilities over all grid squares is equal to 1. Thus, all density estimates used
in the analysis throughout this report are valid probability mass functions. This information,
when combined with information on other external factors, such as population density, can
then be used to generate estimates of overall injury rates.

2.2.1 Application of Kernel Smoothing to PDF Generation

The problem at hand is to estimate the probability density function for the impact distribution
across the area of interest. There are many approaches to density estimation and TRC
Mathematical Modelling has focussed on Kernel Smoothing (see [2]) for this application. In
broad terms, methods for density estimation can be classified either as parametric or non-
parametric.
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Parametric methods rely upon correctly specifying a family of distributions, such as the
bivariate Gaussian, and then adjusting the parameters of that distribution to fit the data.
Although parametric methods could be expected to provide the highest statistical efficiency,
they are not applicable in this case because of the complexity of the data. In particular, none of
the available families of parametric densities is suitable.

Non-parametric methods include histogram methods, kernel density estimation and various
series expansions. Unlike parametric estimation, non-parametric methods do not assume a
particular form for the impact distribution. Histogram methods are extremely simple to
implement and involve the fewest assumptions about the impact distribution. However, they
do not smooth or interpolate between points and hence are not suitable. Kernel density
estimation and series expansions both provide for smoothing and interpolation between data
points. It was decided to focus on kernel density estimation for practical reasons; namely, the
method has been extensively studied [[3, 4] and other references], its theoretical properties are
well understood and efficient implementations are widely available.

Kernel Smoothing works in the following way (taken from [2]):

A probability density function f of a random variable X can be defined by
f(x)=|im2—1hP(x—h< X <x+h),

h—0

where &1 is a constant. For any given ki, we can estimate P(X —h < X < x + h) by the proportion
of the sample falling in the interval (x —h, x + h) . Thus, a natural estimator of the density is
given by

f(x) = %x number of observations fallingin (x — h, x + h).
n

This is known as the naive estimator, and can be expressed more generally as

f(x):li%xw(x—hxi}

i=1

where w(- ) is a weight function given by

1 .
wx) =15 if x| <1,
0 otherwise.

It is easy to generalise this estimator by replacing the weight function w(-) with a kernel
function K(-) that satisfies the condition

T K(x)dx =1.
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Usually, K(- ) will be a symmetric probability density function. Thus, the kernel estimator with
kernel K(- ) is defined by

; 13 X=X,
f(x)=—)> K o
0= Th 2 ( : j
where & is known as the bandwidth parameter. The idea of the kernel density estimator is that it
smooths the raw data into a probability density function. That is, it spreads the weight of each
data point over a wider area (determined by the kernel function) so that it “fills in” the gaps

between each data point, whilst assigning greatest probability density to the areas with the
greatest concentration of data points.

The naive estimator can be considered as the sum of equal-sized ‘boxes’, with each box
centred at an observed data point. In the same way, the kernel estimator can be considered as
a sum of smooth ‘bumps’ placed at the observations. The kernel determines the shape of the
bumps while the bandwidth i determines their width. If the selected bandwidth is too
narrow, these bumps will not overlap, and the resulting density estimate will be a collection of
isolated bumps of probability density. This may also occur if the data are too sparse. On the
other hand, if the bandwidth is too large, each point will be spread over a very large area, and
considerable amounts of probability density will be allocated to areas where no data has been
observed. Thus, it is important to select an appropriate bandwidth.

The 2-dimensional generalisation of the kernel estimator is given by

° 1 3 X=X, y-Y,
fey)=—= ZK( A j

xHly =l X y

where K(- ) is now a 2-dimensional kernel function. Clearly, there are a number of things to be
determined before using the kernel density estimator. Firstly, one must choose the kernel
function K(- ). Secondly, in practice, the density estimate is computed over a discrete grid by
evaluating the formula given above at each point on the grid. Thus, it is also necessary to
determine the dimensions of this grid. Throughout this report, this will be referred to as the
granularity of the density estimate. Finally, and importantly, one must choose the values of
the two bandwidth parameters, i, and h,. In selecting the bandwidths, there are a number of
methods from which to choose. For 2-dimensional kernel density estimation, the most
common methods of selecting the bandwidth are to apply a certain standard-distribution
based formula or to use cross-validation. These issues are addressed in Section 2.2.3.

2.2.2 Application of Kernel Smoothing to the Missile Impact Data
By applying kernel density estimation to the missile impact data and performing certain

manipulations on the kernel density estimates obtained, it is possible to obtain an estimate of
the missile impact distribution that appears to be reasonable.

10
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This process has been carried out for the scenario described in Table 2, and a final estimate of
the missile impact distribution was obtained. A representation of this final estimate is shown
in Figure 5, below. The figure shows the probability mass function obtained through:

o Kernel smoothing the data provided.

e Applying an artificially created (circular) Maximum Energy Boundary to the
probability mass function created.

e Usingdifferent colours in the figure to represent different levels of probability density.

The legend at the left of the plot gives an indication of the level of density to which the
various colours correspond. Note that due to the large number of grid squares into which the
area of the density is divided, the levels of probability assigned to each grid square are very
small. For this reason, the plots of the kernel density estimates in this report show the log
(base 10) of the density. Thus, for example, a grid square of the same colour as the first square
on the legend indicates an estimated probability density between 0.01 and 0.001. Areas with
estimated density less than 10-20 have simply been coloured white. The apparent truncation of
the probability density estimate in the top left and bottom left regions is due to application of
the circular Maximum Energy Boundary used in this example. It is important to note that the
kernel density estimate plots shown in this report depict the probability density per unit-cell.
To calculate the probability per metre-squared the probability density in each cell must be
divided by the area of the cell.

The step-by-step process by which this estimate was obtained is now explained.

Log10 of Kernel Density Estimate
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Figure 5:  Final kernel density estimate for the scenario described in Table 2

The first step toward obtaining an overall kernel density estimate for a particular scenario is to
compute individual kernel density estimates for each failure mode for that scenario. Figure 6
and Figure 7 show the kernel density estimates for the data shown in Figure 1 and Figure 2,
respectively, which correspond to failure modes 0 (no failure) and 1 (zero deflection) for the
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scenario described in Table 2. The actual impact points are also shown in order to illustrate the
guality of the density estimate.

For the kernel density estimates shown in Figure 6 and Figure 7, the bandwidth parameter
was chosen according to a formula discussed in detail in Section 2.2.3.3 and the kernel
estimator was applied on a 256x256 grid overlaid on the dataset. The area for which the
density estimate was computed for this scenario was determined from the range of the
combined data for both failure modes. The individual kernel density estimates for each failure
mode of that scenario were computed on a common grid in order to be able to calculate a
weighted average of the distributions of the various failure modes for that scenario. This
weighted average is discussed and calculated in Section 2.3.1, below. The overall x-range of
the density estimate for the scenario to which Figure 6 and Figure 7 correspond is (-6727.9,
32693.8), the overall y-range is (-25956.4, 22538.2), and the dimensions of the rectangles in the
discretisation of the impact distribution for the individual failure modes are 153.99 m by
189.43 m. This will also be the discretisation of the weighted average.

Log10 of Kernel Density Estimate
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Figure 6:  Kernel density estimate for scenario in Table 2 where no failure occurs (failure mode 0)

It can be observed from Figure 6 that the kernel density estimate appears to be a reasonable
estimate of the underlying density that generated the impact points shown. Since the vast
majority of the impact points fall in one of two areas of especially high impact density, the
estimated probability density in these two areas is much greater than in the remaining area of
the plot. A further result of the two areas of very high impact density is that the bandwidth
chosen is quite small, and therefore the tails of the kernel density estimate decay quite rapidly.

As discussed above, a possible consequence of not having enough data or choosing too small
a bandwidth is that the resulting kernel density estimate is a collection of isolated bumps of
probability density, corresponding to the data points. In Figure 6, above, the kernel density
estimate appears to be a reasonable estimate in most areas of the plot, but in the areas where
the data are sparse, isolated bumps of density can be observed. The issue of bandwidth
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selection is further discussed below, as is the issue of assessing whether or not the dataset is of
sufficient size.

Log10 of Kernel Density Estimate
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Figure 7:  Kernel density estimate for scenario in Table 2 where all actuators lock to zero deflection
(failure mode 1)

The kernel density estimate in Figure 7 also appears to be a reasonable estimate of the
underlying density that generated the impact points shown. The areas of greatest estimated
probability density correspond closely to the areas of greatest impact density. The dispersion
of the impact points is greater in the zero deflection case than in the no failure case.
Consequently, the bandwidth chosen is larger, and the tails of the kernel density estimate
decay less rapidly in the zero deflection case. However, the rate of decay in the zero deflection
case is still quite rapid since this is an inherent feature of the bivariate normal kernel.

The code used to analyse the data provide by DSTO and to generate the plots in this report
was developed by TRC Mathematical Modelling in the “R” statistical analysis package. Ris a
freeware software package available for download from www.r-project.org. It has built-in
routines for handling large datasets and applying kernel smoothing techniques to 2-
dimensional data, such as the impact point data generated by DSTOs missile flight
simulations.

Looking at the figures, we observe the following key features:

1. Asdescribed earlier, kernel density estimation “fills in”” areas of low impact density
that exist physically between two high density impact regions. See Figure 7 for an
example. The amount of in-fill, or spreading, is controlled by the bandwidth
parameter. The following section provides a detailed coverage of how the bandwidth
parameter affects the probability density function generated.

2. When a high density impact area exists on the edge of the envelope of the impact
points, kernel smoothing spreads a portion of the distribution to the area outside of
the envelope. See Figure 6 for an example. If the simulated data are believed to
provide a very accurate representation of the actual impact distribution that could be
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expected in practice, there would be an argument for applying a smaller bandwidth
parameter to points in those impact regions. In effect, this would “tighten” the
probability density function generated to more closely represent the data. On the other
hand, if there is any doubt about the integrity of the input data, then such a tightening
would be a more aggressive, rather than conservative, approach to the development of
range safety templates.

3. Another issue to consider in determining the effectiveness of kernel density estimation
is the size of the dataset. Clearly, if the number of data points available is too small, it
is impossible to obtain a good estimate of the underlying density. As mentioned
earlier, a possible consequence of this is that the resulting kernel density estimate
consists of a collection of isolated bumps of probability density each corresponding to
a data point. This issue is further complicated by the fact that the given data exhibit a
high degree of heterogeneity in the density in different areas of the impact
distribution. Thus, while there may be plenty of data available to estimate the density
in some areas of the impact distribution, the data may be very sparse in other areas
which do in fact contain a significant amount of probability density.

Items 1 and 2, in particular, highlight that while kernel smoothing has many useful
characteristics with regards to generating probability density functions from simulated data,
its use in the development of range safety templates requires careful application and the
review of input data by appropriate subject matter experts in the weapons area. The selection
of appropriate kernel smoothing input parameters is not simply a matter of statistical analysis
and blind application of existing formulae for selection of the bandwidth parameter.

2.2.3 Issues in the Application of Kernel Smoothing

2.2.3.1 Choice of Kernel

As mentioned in Section 2.2.1, there are a number of decisions that need to be made in order
to apply kernel density estimation. The first of these is the choice of the kernel function itself.
A common choice of bivariate kernel function is the bivariate normal density function. There
are a number of other kernel functions that may be used, some of which are more
computationally efficient than the normal kernel. However, computational efficiency has not
presented any significant problems in the implementation of the kernel density estimator.

A second issue with the normal density function is that the tail decays faster than ¢". Thus, the
tails of the resulting kernel density estimate also decay exponentially. In the case of the missile
impact distribution, the interpretation of this is that as the impact location moves away from
the regions of high impact density, the probability density associated with that impact
location decays very rapidly. This may be an undesirable feature of an estimate of the impact
density, since it may imply that impact locations just outside the envelope of the impact points
observed in the given dataset have very small associated impact density. It may be more
desirable to associate higher impact densities with these points. However, this issue is also
related to the choice of bandwidth, since a larger bandwidth creates a longer tail. The issue of
bandwidth selection is further discussed below, but for now, it is sufficient to note that rapid
decay of the tail of the normal kernel can be overcome, to some extent, by an appropriate
choice of bandwidth.
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One advantage of the normal kernel in applications such as the range safety projectis thatit is
much more likely to be familiar to non-statisticians, and its properties are much more widely
known. Since the two major issues with the normal kernel can both be overcome, the kernel
function used for the analysis throughout this report is the bivariate normal density function.

2.2.3.2 Granularity and Range

A second aspect to be determined is the grid over which the density estimate is computed. In
order to determine this grid, it is sufficient to determine the range over which the density
estimate is to be computed and the dimensions of the grid (that is, the granularity).

For the analysis throughout this report, the range over which the density estimate is
computed has been determined by taking the range of the impact point data and adding a
border of width 10km around the outside. In all of the kernel density estimates shown
throughout this report, it can be seen that the probability density at any point outside this
range is less than 10-20. Therefore, it has been decided that this is a sufficiently wide range over
which to compute the kernel density estimate. In a subsequent step of the procedure for
obtaining an estimate of the impact density for a particular scenario, a maximum energy
boundary will be applied to the kernel density estimate. The application of a maximum
energy boundary sets the estimated probability density in all grid squares outside of the
boundary to 0. Therefore, provided that the range of the original kernel density estimate is
large enough to contain the entire maximum energy boundary, the effect of the range on the
kernel density estimate will be negligible. In fact, x- and y-ranges of the maximum energy
boundary may be appropriate choices for the range of the grid over which to compute the
kernel density estimate. Maximum energy boundaries are further discussed in Section 2.3.2.

In determining the granularity of the estimate, there are two competing factors to consider.
Firstly, itis clear that a finer discretisation will provide a finer estimate of the density function.
However there are also limits imposed on the granularity by computational issues. For the
analysis described in this report, the granularity was chosen such that a sufficiently fine
estimate was obtained whilst maintaining a reasonable computation time. The granularity of
each density estimate given in this report is 256x256. However, the software used does allow
the user to select a granularity of their own choice (for example, 128 or 512).

2.2.3.3 Bandwidths

The final choice to be made is the values of the bandwidth parameters. In many ways, this is
the most important choice since “both theory and practice suggest that choice of kernel is not
crucial to the statistical performance of the method and therefore it is quite reasonable to
choose a kernel for computational efficiency” [3]. The most common methods of selecting the
bandwidth are to use one of two common standard-distribution based formulae, or to use
cross-validation. These standard-distribution based formulae are referred to in the literature
as “rules of thumb”. Although this choice of term suggests that the formulae may not be
appropriate for range safety purposes, they are in fact quite valid as long as certain
assumptions about the data hold. See section 3.4.2 of reference [3] for details.

The rules of thumb given in the literature actually apply to 1-dimensional datasets. They can
be applied separately to each dimension of a 2-dimensional dataset, but this is not always
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appropriate. The first rule of thumb is to select the bandwidth according to the following
formula:

1
h =1.06 x min{a,@}x ns,
1.34

where IQR is the interquartile range of the distribution.

A theoretical derivation of this rule is given in [2, pg 45]. The second rule of thumb is a simple
variation of the first, where the factor of 1.06 is replaced by 0.9. The motivation behind this
variation is that with a factor of 0.9, the error of the density estimate will be within 10% of the
minimum error. However, it is more common to use the first rule of thumb.

The objective of the cross-validation methods is to choose the bandwidth that gives the best fit
to the data. The data are partitioned into a number of equal-sized subsets. One of the subsets
is removed from the dataset, and the remaining data are used to calculate a kernel density
estimate. This is repeated for each subset, and a measure of the error of the estimate based on
the removed subset is calculated. This procedure is repeated for a number of different
bandwidths, and the bandwidth is chosen to give the minimum error. This is clearly a useful
method of choosing the bandwidth. It also has the advantage that it may be used to select the
best 2-dimensional bandwidth, rather than choosing the bandwidth independently for each
dimension. However, it is considerably more difficult to implement, and if reasonable results
can be obtained using a simpler method, it may not be necessary to expend the additional
effort.

For the given data, the first rule of thumb appears to give reasonable results. Since it is the
most common method, and the simplest to implement, the bandwidths used to obtain the
kernel density estimates throughout this report have been chosen using the first rule of
thumb.

A further possibility in bandwidth selection is known as an adaptive bandwidth, or dynamic
bandwidth. The idea is that different bandwidths may be used for different regions of the (x,y)
area of the density estimate. A number of dynamic bandwidth techniques have been
developed, but to implement such a method effectively would take a considerable amount of
additional implementation and validation. To effectively implement such a method is
therefore not feasible within the timeframe of the current project.

2.2.3.4 Size of Dataset

Before applying kernel density estimation, it is necessary to ensure that the dataset contains a
sufficient number of points to obtain a reasonable density estimate. The smallest dataset
provided by DSTO from which a kernel density estimate was to be obtained was of 10,000
points. However, unless stated otherwise, the kernel density estimates shown throughout this
report are based on datasets of 20,000 points. A possible way of determining the number of
points required to obtain an acceptable kernel density estimate is to obtain independent
samples of various sizes, and generate kernel density estimates for each. Assuming that the
largest sample is sufficient to obtain an accurate kernel density estimate, the kernel density
estimates based on the smaller samples can be compared to that of largest sample. If the
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kernel density estimates based on samples of a certain size are sufficiently similar to the kernel
density estimate based on the largest sample, and little is gained by using a sample larger than
this size, then this may indicate that this is a sufficient number of data points to obtain an
acceptable kernel density estimate.

An approach similar to that described above has been applied to a dataset of 50,000 points.
However, with only 50,000 points, it is impossible to obtain many independent samples. For
this reason, the samples used in this investigation are subsets of the 50,000-point dataset.
Thus, the corresponding kernel density estimates may be more similar to the 50,000-point
estimate than would be expected if the samples were independent. However, it is still possible
to gain some insight into the number of points required to obtain an accurate kernel density
estimate.

For the scenario described in Table 2, only 20,000 points were available. However, for a
different scenario, a dataset of 50,000 points was available. Therefore, the dataset of 50,000
points has been used in this investigation. In fact, the scenario from which the dataset of
50,000 points was derived is a reflection in the x-axis of the scenario described in Table 2.
Consequently, a degree of symmetry can be observed between both the scatterplots and
kernel density estimates for these two scenarios. This symmetry will be discussed later in this
report.

Firstly, the kernel density has been computed for the dataset of 50,000 observations. For
samples sizes 5000 — 30,000 points, at intervals of 5000, 20 subsets of each size have been
randomly selected, and a kernel density estimate has also been generated for each subset. The
scatterplot and kernel density estimate for the entire dataset of 50,000 observations, along with
typical scatterplots and kernel density estimates for each sample size are given in Appendix B.
Appendix B also contains plots of 10 exclusion zones for each of the kernel density estimates.

For each size, the 20 subsets of that size have been used to compute an ‘average’ kernel
density estimate for that size. This gives an indication of the ‘average’ kernel density estimate
that might be calculated from a sample of that size (assuming that the sample of 50,000 is a
good representation of the impact distribution). Each average kernel density estimate was
then compared with the 50,000-point kernel density estimate.

The measure of difference used for the comparison of the average kernel density estimates
with the 50,000-point estimate was the sum of the absolute differences at each grid square. Itis
not difficult to see that for two identical distributions, this measure will be equal to 0, and as
two distributions become more and more different, this measure will increase. Throughout
this report, the difference between an average kernel density estimate and the 50,000-point
estimate using this measure will be referred to as a density difference.

Table 3 shows the density differences for average kernel density estimates for various sample
sizes. Table 3 also shows both the absolute and relative marginal decrease in density
difference as the sample size increases. These quantities give an indication of the
improvement in the kernel density estimate gained by using a larger sample. For convenience,
the absolute and relative differences have also been plotted against the number of points, and
are shown in Figure 8 and Figure 9.
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Note that whilst both the ratio of density differences and the relative decrease in density
difference are both relative to the density difference with a further 5000 points, they do not
represent the same quantity. The formulae by which each of these quantities was calculated
are given below.

Density Difference(n)

Density Difference(n —5000)

Ratio of Density Difference =

Density Difference(n —5000) - Density Difference(n)

Relative Decrease in Density Difference = - -
Density Difference(n —5000)

where Density Difference(n) represents the density difference for an n-point average kernel

density estimate. Whereas the ratio of density differences gives the size of the difference

relative to the difference with 5000 fewer points, the relative decrease in density difference

gives the decrease in density difference achieved by adding a further 5000 points. In fact, it

can be seen from the formulae above that these two quantities are related by the equation

Ratio of Density Difference =1— Relative Decrease in Density Difference.

Table 3:  Differences between average kernel density estimates and 50,000-point kernel density
estimate for various sample sizes

Sample Size | Density Difference | Absolute Decrease Ratio of Density | Relative Decrease in
from 50,000-point in Density Difference Density Difference
estimate Difference

5000 0.30563153 NA NA NA

10,000 0.2134398 0.09219173 0.698356613 0.301643387

15,000 0.1582162 0.0552236 0.741268498 0.258731502

20,000 0.11973258 0.03848362 0.756765616 0.243234384

25,000 0.09010242 0.02963016 0.752530514 0.247469486

30,000 0.06645264 0.02364978 0.737523365 0.262476635

In considering these results, it should be noted that the difference between the average kernel
density estimate and the 50,000-point kernel density estimate do not necessarily reflect the
size of the difference that could be expected for a kernel density estimate obtained from a
single sample of the given size. In particular, it could be expected that the errors associated
with a single sample would be larger that those associated with the average of 20 independent
samples. It is, nevertheless, reasonable to assume that the general pattern of the difference
decreasing as sample size increases would also apply to single samples. The magnitude of the
difference for a given sample size could, in principle, be estimated from the 20 samples but
this calculation has not been performed with the present data.
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Absolute decrease in density difference

Figure 8: Trend in absolute marginal density difference as sample size is increased.
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Figure 9:  Trend in relative marginal density difference as sample size is increased
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Together with Table 3, Figure 8 and Figure 9 show that as the sample size increases, the
difference between the 50,000-point kernel density estimate and the average kernel density
estimate becomes smaller. This is as expected. It can also be observed that as the sample size
increases, the absolute marginal difference gained by adding extra points diminishes, and the
relative marginal difference remains reasonably constant. It is difficult to determine an
acceptable value of this difference, especially since the samples used were subsets of the
50,000 point dataset, but it would appear that the kernel density estimate may be significantly
improved by increasing the number of points, even beyond 20,000.

This issue requires further investigation before undertaking a large project using kernel
density estimates and the various techniques proposed in this report. Additionally, this issue
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is further complicated by the high degree of heterogeneity in the density in different areas of
the impact distribution. This issue is therefore also related to the choice of bandwidth since it
may be appropriate to use a larger bandwidth for areas where the data are more sparse. Thus,
in future analysis of the missile impact data, it may be helpful to use a dynamic bandwidth
method.

Itis important to note, however, that while there may be a relatively significant change in the
details of the probability density function as the number of points is increased, this is but one
measure of comparison and may not be the most significant measure.

Appendix B, Figure 64 through Figure 69, shows the convex exclusion zones generated for
each of the datasets. Visually, we see that the exclusion zone changes very little as the number
of points is increased beyond 15,000, and even the difference between 5,000 data points and
30,000 data points is relatively small. Based on this form of measure and this particular
dataset, even 5000 points may be sufficient depending on the degree of accuracy required,
especially if other safety margins will be subsequently applied.

2.2.3.5 High density Regions on Boundary of Impact Envelope

A further issue associated with the heterogeneity of the impact density is that if there is an
area of high impact density that lies on the boundary of the impact envelope, it is possible that
a considerable amount of the density associated with that area could be spread to regions
beyond the impact envelope, where no data has been observed. However, this may not be as
great a problem as it may seem, because Figure 6 and Figure 7 show that in the no failure case
(Figure 6), where the areas of high impact density are much nearer to the boundary of the
impact envelope, the amount of probability density spread to regions beyond the impact
envelope is actually smaller. The explanation of this is that in the no failure case, smaller
bandwidths are chosen, and the probability is spread over a smaller area. In combination with
the relatively low probability of a failure as compared with the “no failure” mode, the actual
amount of probability assigned outside of the simulated impact envelope in the merged
probability density function is commensurately decreased. Figure 6 and Figure 7 show that
the impact points are much less dispersed in the no failure case than in the zero deflection
case.

The bandwidths used to generate the kernel density estimates shown in Figure 6 and Figure 7
are given in Table 4.

Table 4:  Bandwidths used to generate kernel density estimates in no failure and zero deflection cases

Case Bandwidth (x) | Bandwidth (y)
No Failure Case (Figure 6) 881.6 668.7
Zero Deflection Case (Figure 7) | 2922.6 2294.3

The evidence from Figure 6 and Figure 7 suggests that the location of the high density regions
in failure mode cases relative to the impact envelope is not the primary factor in determining
the amount of probability density assigned to regions outside the impact envelope. The
evidence suggests that the values of the bandwidths have a much greater influence on this.
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From the discussion in this section, it is clear that there are many factors to be considered in
generating an accurate kernel density estimate. There can be no “blind” process for producing
a kernel density estimate that is appropriate for any dataset that may arise. It is necessary to
ensure that appropriate statistical inputs have been used, and that the results obtained are
consistent both with the data and with what might reasonably be expected in reality.
Therefore, any procedure for generating a kernel density estimate should be reviewed by a
panel of experts, including both statisticians and weapons experts.

2.3 Creating overall PDFs for a given scenario
2.3.1 Generating overall PDFs from individual failure mode PDFs

In the previous sections we described the process of generating a numerical probability
density function from a given data set. For the purposes of the RSTT it is necessary to generate
probability density functions for a given scenario. Recall that a scenario is made up of
information covering all known failure modes, together with the “no failure” case, for a given
set of other input parameters.

For the illustration of the technique of generating a density estimate for a particular scenario
by an appropriate combination of the density estimates for the individual failure modes, TRC
Mathematical Modelling has incorporated only two failure modes. That s, no failure (failure
mode 0) and zero deflection (failure mode 1). The reason for this is that there was only one
scenario for which data corresponding to multiple failure modes were available (namely, the
scenario used throughout this report). Therefore, there was no other scenario that could have
been used to illustrate the techniques proposed in this report. The data available for this
scenario covered only failure modes 0 and 1. There was a dataset provided that corresponded
to a further failure mode (single actuator freeze - failure mode 2), but this dataset did not
correspond to the same scenario as the data for failure modes 0 and 1. In theory, it is
straightforward to incorporate any number of failure modes with this technique, provided
that an expert panel of some form is able to provide information on the probability of each
failure mode.

Denote by p; the probability of failure mode i,i=1, ..., N, and let py be the probability that no
failure occurs. Then,

Po = 1'Zi>0 Pi.
Let PDF;S denote the probability density function for failure mode i, i = 0, ... N, of a given
scenario S, where N is the number of failure modes. PDF;$ is a matrix whose (x,y)" element is

the probability of missile impact in grid square (x,y) given failure mode i of scenario S occurs.
The probability density function for a given scenario, PDFs, is given by

PDFS=3X; p; PDFs

As an example, for the data examined in Section 2.2.2, suppose we have:
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Failure Mode 1: Fins locking to zero deflection, probability p; = 0.0001.
Probability of no failure, po=1-p; =1-0.0001 = 0.9999.
Combining the kernel smoothing generated probability density functions for these two

modes, according to their respective probabilities of occurrence, we obtain the probability
density function shown in Figure 10, below.

Log10 of Kernel Density Estimate
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Figure 10: Overall PDF for scenario in Table 2

The interior of the combined PDF is very similar to that of the no failure PDF (Figure 6). This
is clearly a sensible result since this case contributes the vast majority of the probability
weighting. However, it can be seen from Figure 10 that the tails of the combined PDF are very
similar to the zero deflection PDF (Figure 7). This is because the tail decays much more
rapidly in the no failure case, as discussed earlier. Thus, in the tail regions the zero deflection
PDF has much greater density, and hence contributes more to the weighted average, even
though it is weighted by a probability of only 10-4.

2.3.2 Generating overall PDFs from individual failure mode PDFs and using the
Maximum Energy Boundary

The probability density functions generated in the previous sections were created by mixing
2-dimensional Gaussian distributions (since the kernel function chosen was the bivariate
normal density). Recall that the general idea is to take each individual impact point and
“spread” it over awider area, with greatest concentration at the impact point itself. However,
the normal density has non-zero probability at any point (x,y). Therefore, this results in a non-
zero probability density even at grid squares huge distances from the impact point itself. This
is unrealistic in practice.

Weapons Systems Division of DSTO has models for generating a “Maximum Energy
Boundary” (MEB) for given test scenarios. The Maximum Energy Boundary is the maximum

22



DSTO-TR-2292

distance, in any given direction, that a missile might travel given various factors, including,
for example, fuel load of the missile.

Clearly, no impact point should lie outside the maximum energy boundary. However, the
models used to generate both the impact points and the maximum energy boundary may not
be perfect. Therefore, in the event that one or more impact points lie beyond the maximum
energy boundary, it would be desirable for the software to be able to detect and report this.
This has not been implemented in the current analysis.

If we are provided with an MEB for a given missile and test scenario, we can combine this
information with the overall PDF generated in the previous section to form a potentially more
realistic probability density function.

Denote by MEBPDFS the MEB constrained PDF for scenario S.

Denote by MEBS the indicator matrix defining the MEB over the same grid layout used to
define PDFs. The (x,y) co-ordinate of MEBS is 1 if grid square (x,y) is within the MEB and 0

otherwise.

Then the total probability mass of PDFS that falls within the MEB is given by

Pves = Zx Z:y PDFS(x,y) . MEBS(X,y),

and
PDF ®(x, )
. S _
MEBPDFS(x,y)={ Puwes  IFMEB(x.y)=1
0 otherwise.

Figure 11 shows an artificial MEB and Figure 12 shows the corresponding MEBPDF based on
PDF shown in Figure 10. The software used to generate the MEBPDF shown in Figure 12
allows the user to specify an appropriate maximum energy boundary. The form of the MEB
input in the function is of a grid of 0s and 1s, where a 1 indicates that a grid square is within
the maximum energy boundary, and a 0 indicates otherwise. Therefore, in order to apply a
realistic maximum energy boundary, it is necessary to generate such a maximum energy
boundary and convert it to the appropriate form for the input to the function.
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Artificial Maximum Energy Boundary
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Figure 11: Artificial maximum energy boundary.
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Figure 12: Overall MEBPDF for scenario in Table 2

2.4 Putting it all together

In this section we bring together the results developed in previous sections and provide
algorithms for computing, for a given scenario:
e The expected number of casualties.

e An exclusion zone for a given exclusion probability level.
e The probability of a missile going outside a given area.
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2.4.1 Predicting the number of people exposed to risk of injury

We are now in a position to estimate the expected number of people exposed to risk of injury
for a given test scenario.

Denote by POP the matrix defining the population density over the same grid layout used to
define PDFs. The (x,y) co-ordinate of POPS is the expected number of people in grid square

(xy).

Let A be the relative size of the impact area of the missile compared to the size of a grid
square.

Assuming that the impact point of a missile is within a grid square and that the impact area is
always fully contained within that grid square, the expected number of people exposed to risk
of injury, E[l], is given by

E[I] = A Zx 2y PDFS(x,y) . POP(x,y), or
E[I] = A Zx y MEBPDFS(x,y) . POP(x.y),

depending on whether an MEB is available, and A is the fraction of the grid square that is
affected when a missile impacts.

We noted earlier that it may not be necessary to accurately estimate the probability density
function central to the impact envelope. When computing expected injury rates an accurate
estimate for the entire region should be used. However, we have pragmatically assumed that
a standard operational practice will be to clear people from the central impact region and
hence any errors that might be introduced due to the less accurate interior probability density
estimates will minimal.

Figure 13 shows an artificial population density map on the same grid as used to compute the
probability density function developed in Section 2.3. As with the maximum energy
boundary, the software used to compute the expected number of casualties allows the user to
input an appropriate population density. It should be noted, however, that the input
population density must be on the same grid as the kernel density estimate. Alternatively, it
may be simpler to deliberately generate the kernel density estimate on the same grid as the
population density function available.
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Artificial Population Density
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Figure 13: Artificial population density

With a nominal value of A of 0.1, in this example the expected number of casualties is
6.150934x10-10 if the PDF is used and is 6. 117528x10-10 if MEBPDF is used.

2.4.2 Creating an exclusion zone

Of potential interest is the idea of determining a convex boundary around the missile range
such that the probability of a missile impacting outside the boundary is less than some pre-
determined level, for example, 10°. This boundary defines a potential “exclusion zone” for
clearance of personnel and / or members of the public.

One method for creating such an exclusion zone with probability level ¢ is the following:
1. Sort PDFs from highest to lowest probability density across all grid squares.

2. Sum the sorted list from highest to lowest probability density, stopping when the total
probability within the exclusion zone is greater than 1-¢.1 Store the list of grid squares
used in the sum.

3. Create a convex hull around the grid squares used in the sum of Step 2.

Figure 14 shows a convex 10° exclusion zone created around the probability density function
developed in Section 2.3. The points plotted in Figure 14 represent the grid squares included
in the raw exclusion zone. Figure 14 also shows the convex hull around this exclusion zone.
Now, the raw exclusion zone, illustrated by the points shown in Figure 14, contains a total
probability of at least 1 - 10°. Therefore, the convex hull shown in Figure 14 is clearly a
conservative 10 exclusion zone. It is possible to obtain a less conservative exclusion zone
using, one of a number of different methods, but this would be considerably more
complicated and more computationally intensive. Additionally, it may not be necessary in this

1 Correct when the total probability across the PDF <= 1. Not correct when the PDF has been over
estimated.
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application, since the probability added by taking the convex hull of the raw exclusion zone
may be very small. This is a possibility that may be worthy of further investigation.

Figure 14: Convex 106 exclusion zone for scenario described in Table 2

2.4.3 Computing probability of leaving the range
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Another possibility of potential interest is the idea of determining the probability that a
missile leaves a firing range. This can be computed in a straightforward fashion from the data

generated above.

Denote by R the indicator matrix defining the firing range over the same grid layout used to
define PDFS. The (x,y) co-ordinate of R is 0 if grid square (x,y) is within the firing range and 1

otherwise.

Then the total probability mass of PDFs that falls outside the firing range, Pz, is given by

If the Maximum Energy Boundary is known, then Pr can be computed using

Pr = Zx 2y PDFS(x,y) . R(X,y).

Pr = 2Zx 2y MEBPDFS(X,y) . R(X,y).

Figure 15 shows a firing range boundary overlaid on the MEB probability density function
developed in Section 2.3. In this example, the probability of the missile leaving the range is

1.954699x10°°.
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Figure 15: MEBPDF for scenario in Table 2 showing boundary of an artificial firing range

2.5 Symmetric Scenarios

Generating a database of impact-point data sets for all scenarios of interest can be an
expensive operation. One idea that may make it simpler to populate such a database is the
idea of symmetric scenarios, that is, whether symmetric initial conditions may produce
symmetric impact densities. If this were the case, then it may be possible to obtain density
estimates for multiple scenarios by computing a single kernel density estimate for a particular
scenario and then using reflections of this density for other scenarios.

In order to test this hypothesis, kernel density estimates have been computed for two
scenarios with symmetric initial conditions, and a measure of the difference between these
kernel density estimates has been calculated, where one density was reflected. These kernel
density estimates were based on samples of 20,000 observations. The measure of the difference
between the densities is the same as that described in Section 2.2.3. If the hypothesis is true,
then when one kernel density estimate is reflected, the kernel density estimates should be
similar, and the measure of the difference between them should be small. In order to be able
to assess the value of the difference that should be expected for two ‘similar’ densities, 20
pairs of disjoint samples from the same scenario were generated, and the differences between
the kernel density estimates for each pair were calculated. These samples also contained
20,000 observations. From this sample of 20 differences, a mean, variance and 99% confidence
interval have been calculated. The value of the difference between the kernel density estimates
for the symmetric scenarios was then used to calculate a quantity known as the p-value. In this
case, the interpretation of the p-value is that it gives the probability that the two kernel
density estimates are exactly symmetric. If the p-value is large enough, then it may be
reasonable to use reflected kernel density estimates to estimate the densities for symmetric
scenarios. However, if the p-value is very small, then this technique may not be appropriate.
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It must be noted, however, that this investigation has been carried out for only one pair of
symmetric scenarios, so it may not be reasonable to extrapolate these results to apply to all
scenarios. It must also be noted that the scenarios used in this investigation are symmetric in
the x-axis. In order to be able to actually apply these ideas, it would be necessary to conduct a
much more extensive investigation. An expert in the system under test, for example the senior
simulation model engineer, may also be able to determine whether it is appropriate to apply
these ideas to the ground impact data points based on their knowledge of the system’s
behaviour.

The following figures provide a visual indication of the extent of the symmetry of the impact
distribution between the two scenarios. Figure 16 and Figure 17 show scatterplots for two
symmetric scenarios, each with 20,000 observations. Since there were 50,000 observations
available for the second symmetric scenario, Figure 17 simply shows a typical subset of 20,000
observations. Figure 18 shows a combined scatterplot of both scenarios, where the dataset
corresponding to the second symmetric scenario has been reflected. We see in that figure that
the “hook” regions align very closely, but visually there appears to be a significant difference
between the two scenarios across the rest of the impact region. This suggests that either the
data were generated differently for points outside of the “hook™ or that the impact
distributions are in fact different. Figure 19 and Figure 20 show kernel density estimates for
the symmetric scenarios, where the density for the second scenario has again been reflected.
The figures show that the ground impact points are not symmetric, despite the symmetry of
the scenarios.

Impact Point Distribution
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Figure 16: Scatterplot for first symmetric scenario
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Figure 17: Scatterplot for second symmetric scenario
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Figure 18: Scatterplot showing both symmetric scenarios (where one dataset is reflected)
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Log10 of Kernel Density Estimate
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Figure 19: Kernel density estimate for first symmetric dataset
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Figure 20: Reflected kernel density estimate for second symmetric dataset
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3. Investigation of Appropriate Size of Datasets and
Resolution of Kernel Density Estimates

3.1 Procedure of Investigation

The second set of tasks undertaken by CDCIN for the RSTT project included an investigation
of the most appropriate number of observations and resolution of the KDEs (Kernel Density
Estimates) to be generated.

Due to the amount of time required to generate each data point, and the vast number of
datasets to be produced, it was deemed important to investigate the relationship between the
number of observations used and the quality of the KDE produced.

A second factor affecting the quality of the KDE is the resolution of the KDE. Throughout this
document, the term resolution will refer to the number of intervals into which the x- and y-
dimensions of the impact distribution are divided. For example, for a KDE with a resolution of
16, the area of the impact distribution would be divided into a 16x16 rectangular grid, and the
KDE process estimates the probability mass of the impact distribution that is contained within
eachrectangle. In order to determine the most appropriate number of observations, it was also
necessary to investigate the relationship between the resolution and the accuracy of the KDE.
We test the changing accuracy of a series of KDEs of a given scenario by examining the
difference between an estimated KDE and the “overall KDE” of the impact distribution. It was
also necessary to investigate the relationship between the number of observations and the
resolution, since, for example, a 1000x1000 KDE based on only 10 observations would provide
a misleading amount of detail, and this may affect the accuracy of the KDE.

In the following, we take as the overall KDE the average of 20 independent KDEs, based on
50,000 observations each. Therefore, the overall KDE is based on a total of 1,000,000
observations. The reason that we have used an average 20 KDEs based on 50,000 observations
each, rather than a single KDE based on all 1,000,000 observations, is that computer memory
constraints did not allow 1,000,000 observations to be processed simultaneously. The
measures of difference will be referred to as the Mean Log Scaled (MLS) difference, the
Exclusion Zone (EZ) difference, and the Total Log difference. Each of these functions
implements a different way of measuring the difference between two probability mass
functions defined over the same range, each highlighting slightly different aspects of this
difference.

The data used in this investigation was supplied by DSTO from the data-set “fault-set all
actuators zeroed GGM 012 1 - 1,000,000, on 23 September 2005. All figures in this section,
except for Figure 28, were generated by partitioning the data into subsets of a particular size,
and calculating the average difference of the subsets from the overall KDE, for various sizes
and resolutions. Therefore, all figures, except for Figure 28, are based on the entire dataset in
the file mentioned above. Figure 28 is based on a particular subset of 100 observations from
this file.
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3.2 Results and Discussion

The first measure of difference calculated was the Mean Log Scaled (MLS) difference. The MLS
difference for two KDEs was calculated by the following formula:

_ 2
iz Z |Ogm{ ( Prest — Povera ) ]'

all grid squares poverall (1_ poverall )

where py.: is the probability mass for the KDE being tested, for a particular grid square, peverai
is the corresponding probability mass for the overall KDE, and # is the resolution of the KDEs.

That is, for each grid square, take the square of the difference between the two probability
masses, divide by a scaled version of the ‘correct’ KDE, take the log (base 10). Finally, take the
average of this quantity over all grid squares.

The scaling factor has been chosen such that an overall probability of p is treated
symmetrically to an overall probability of 1-p., and the log has been taken in order to
emphasise larger differences.

A typical plot of the average “error” of a test KDE from the overall KDE against the
resolution, for a fixed number of observations is shown in Figure 21.
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Figure 21: Average Mean Log Scaled error vs resolution for 1000 observations

Figure 21 indicates that as the resolution is increased, the “error” of the KDE initially
decreases by a small amount, but for a resolution greater than 32 (5 on the x-axis of the figure
as it is shown as the log to base 2), the improvement is negligible. A second point illustrated
by Figure 21 is that as the resolution is increased, the standard deviation of the “errors”
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initially increases by a small amount. However, again, for a resolution greater than 32, the
difference in standard deviation is negligible. For these reasons, it was decided that
resolutions of 16 and 32 were of greatest interest, and for the remaining measures of
difference, plots were only generated for the average error against the number of
observations, for fixed resolutions of 16 and 32. These plots are shown in Figure 22 - Figure 26.
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Figure 22: Average Mean Log Scaled error vs number of observations for a resolution of 16
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Figure 23: Average Total Log error vs number of observations for a resolution of 16
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Trend in '"MLS error’ of KDE with std errors
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Figure 24: Average Mean Log Scaled error vs number of observations for a resolution of 32
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Figure 25: Average Total Log error vs number of observations for a resolution of 32
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Trend in '"MLS error’ of KDE with std errors
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Figure 26: Average Mean Log Scaled error vs number of observations for a resolution of 32

The most obvious observation from Figure 22 - Figure 26 is that as the number of observations
increases, it appears that the “error” of the KDE from the overall KDE will continue to
decrease indefinitely. Therefore, in the feasible range of the number of observations, there
appears to be no threshold above which a “perfect” KDE is obtained, for which no further
improvement can be gained. Similar analysis during Stage 1 of the RSTT project also
suggested that no such threshold exists up to 35,000 observations.

The second point to observe from Figure 22 - Figure 26 is that as the number of observations
increases, the standard error also appears to decrease. As with the average error, this trend
also appears to continue indefinitely, as can be observed from the standard error bars for 5000
and 10,000 observations, in Figure 26, above.

The final measure of difference calculated was the exclusion zone difference. Figure 30 and
Figure 31, below, show the average errors with standard error bars, for the Exclusion Zone
difference. The Exclusion Zone difference is made up of two components. These components
are plotted in green and red in Figure 30 and Figure 31, below. The green components
represent the percentage of grid squares that were conservatively included in the exclusion
zone for the test KDE and the red components represent the percentage of grid squares that
were incorrectly omitted from the exclusion zone for the test KDE. The black components
represent the total Exclusion Zone error, which is the sum of the red and green components.
Note that each of these figures is given as a percentage of all grid squares included in either
the given test KDE, the overall KDE or both.

Figure 27 and Figure 28, below, show exclusion zones for the overall KDE and a test KDE
based on 100 observations, with a resolution of 16. Figure 29 shows the components of the
exclusion zone difference for these two exclusion zones. For this particular test KDE, the
percentage of grid squares that were conservatively included in the exclusion zone for the test
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KDE (that is, the green component) is equal to 14.06%, and the percentage of grid squares that
were incorrectly omitted from the overall KDE (that is, the red component) is equal to 16.68%.
Therefore, the total exclusion zone error between the two exclusion zones shown in Figure 27
and Figure 28 is equal to 30.74%.
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Figure 27: Ouerall exclusion zone
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Figure 28: Exclusion zone for a KDE with 100 observations and a resolution of 16
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Exclusion Zone Difference
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Figure 29: Components of the exclusion zone difference for the two exclusion zones shown above
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Figure 30: Average Exclusion Zone error vs number of observations for a resolution of 16
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Trend in 'EZ error' of KDE
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Figure 31: Average Exclusion Zone error vs number of observations for a resolution of 32

In contrast with the earlier figures, Figure 30 and Figure 31 indicate that the improvement in
the accuracy of the exclusion zone diminishes as the number of observations increases.

The Exclusion Zone difference also appears to have a number of other useful qualities. It
seems to have the smallest standard error of all the measures of difference calculated, and it
also seems to give the most consistent and smooth trend as the number of observations
increases. Additionally, it can be seen that the Exclusion Zone error is composed
predominantly of the conservative portion of the error, plotted in green.

Regarding the selection of the number of observations, the red parts of Figure 30 and
Figure 31 suggest that if the number of observations is at least 600, then the average
percentage of grid squares incorrectly omitted from the exclusion zone is around 5%. It is also
likely that this percentage will be considerably reduced when the exclusion zone is converted
to a convex hull. With the current software, it is not possible to determine how much this
percentage would be reduced, because it is not possible to apply this measure of difference to
the convex version of the exclusion zone.

Overall, itappears that the quality of the KDE generated continues to improve as the number
of observations is increased. This suggests that as many observations as possible should be
generated, since any increase will result in improved estimates of the KDE. However, the
observed trends in the Exclusion Zone difference measure suggest that if any less than 600
observations are generated for each scenario, the percentage of grid rectangles incorrectly
omitted from the exclusion may be unnecessarily high, of the order of 5%. Consequently, 600
observations is recommended as a lower bound on the number of observations generated for
a given scenario.
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3.3 Recommendations

We recommend the following:
1. That KDE resolutions beyond 16 x 16 and 32 x 32 do not provide significantly more
accurate information and hence 16 x 16 or 32 x 32 resolutions appear to be suitable for
the development of Range Safety Templates.

2. That at least 600 observations (impact data points) be used in generating KDEs for a
given scenario.

3. That a more precise estimate of the average percentage of grid squares incorrectly
omitted from the exclusion zone be obtained.
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4. Issues in KDE generation — Dynamic Bandwidth
Selection

The third set of tasks undertaken by CDCIN for the RSTT project included researching
problems adjacent to the PDF generation problem. During the course of this third set of tasks
however, it became apparent that for input datasets with certain properties, the kernel density
estimation algorithm proposed previously produced an inappropriate kernel density estimate.
An example of such a KDE is given in Figure 32, below.
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Figure 32: Scatterplot and KDE with inappropriate bandwidth selection

The impact data comprises 600 points, with the bulk of the points (approximately 90%)
concentrated around the point (8,4).

Ideally, the KDE for this dataset should contain reasonably high levels of probability for the
majority of the area within the convex hull of the impact points. As can be seen in the KDE in
Figure 32, there are large areas within the convex hull that contain effectively 0 probability
mass. Upon further investigation, it was found that the source of this problem was the
bandwidth selection algorithm. More specifically, it was found that if the dataset input to the
KDE algorithm contained a very dense cluster of points, the bandwidths selected by the
algorithm were too small, and the resulting KDE exhibited features such as those seen in
Figure 32.

A possible solution to this problem would be to generate separate KDEs for the cluster and the
remaining points, then taking a weighted combination of the two KDEs. This can be achieved
by the procedure:
1. Determine a grid over which the final KDE is to be generated.
Identify a small set of grid squares containing high densities of points.
Generate a KDE for the points within the small set of grid squares.
Generate a separate KDE for the remaining points.
Take a weighted combination of the two KDEs.

arwn
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Note that a KDE is represented by a matrix where each cell of the matrix contains the
estimated probability mass for a grid square Therefore, the weighted combination referred to
in Step 5 of the above procedure can be calculated by the following formula:

KDEfinal = P xKDEciuster + (1'p) X KDEscatter

where KDEq.str is the KDE based on the points in the chosen set of dense grid squares,
KDE;qr is the KDE based on the points in the remaining points, scattered outside the chosen
set of grid squares, p is the proportion of impact points that lie within the chosen set of grid
squares.

Figure 33, below, shows the KDE generated by this method for the scenario shown in
Figure 32. Note that as this method uses different bandwidths for different sets of points, this
is actually an example of a KDE method using dynamically determined bandwidths.
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Figure 33: KDE with dynamic bandwidth selection

In order to develop a more robust KDE algorithm, it is necessary to ensure the selection of an
appropriate bandwidth, preferably via an automated procedure.

We commence by examining the effect on KDE generation of the existence of a tight cluster of
points in the data set. We have created data sets in which between 10% and 90% of the points
are specifically allocated within one grid square and the remainder are uniformly distributed
over a larger region. We then generate KDEs for each case and identify where the KDEs
become inappropriate. Figure 34 to Figure 42 show the difference between KDEs generated
using the “standard” static bandwidth procedure and using the procedure outlined in Steps 1-
5, above.
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Figure 37: Static and dynamic bandwidth KDEs with a 40% cluster. Note that both plots are log base-

10 of the estimated probability density.
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Figure 38: Static and dynamic bandwidth KDEs with a 50%
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Figure 39: Static and dynamic bandwidth KDEs with a 60% cluster. Note that both plots are log base-

10 of the estimated probability density.
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Figure 41: Static and dynamic bandwidth KDEs with a 80% cluster. Note that both plots are log base-

10 of the estimated probability density.
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Note that in all of the plots shown in Figure 34 to Figure 42, the colour of the grid square in
which the cluster occurs is somewhat obscured by the impact points plotted in this grid
square. However, in each of these plots, the grid square in which the cluster occurs will
contain a large probability mass, and would therefore appear as a red grid square in these
plots, if it were not obscured.

For the scenarios shown in Figure 34 to Figure 42, with up to 50% of impact points in a single
grid square, the statically generated KDE and dynamically generated KDE are very similar.
However, with 70% in a single grid square, the effective ranges of the two KDEs are very
different, while at 80% there are patches of effectively 0 probability within the convex hull of
the data. This suggests that a dynamic bandwidth KDE generation procedure that searches for
cluster densities of, say, 30% of impact points will provide very similar KDEs for lower cluster
densities, and effectively “spread” probability mass over the wider impact area in the
presence of higher impact densities.

We note that Figure 34 to Figure 42 also highlight a potential limitation of the proposed
dynamic bandwidth procedure. The KDEs generated by the dynamic bandwidth procedure
suggest an extremely tight boundary around the cluster area, and the area immediately
outside the impact area has a reasonably low impact probability. Whilst this may be justified
based on examination of the numerical data purely in isolation, care must be taken in the
actual application of the results given potential uncertainties in the physical nature of the
process being modelled and the method by which the data is being generated (numerical
simulation).

We recommend that relevant subject matter experts independently review the KDEs generated in such
cases and provide advice on the subsequent construction of range safety templates, in particular near

areas of dense concentration of impact points.

We recommend that if 30% or more of impact points lie within a single grid square that the dynamic
bandwidth KDE procedure described above be employed.

We also note that the issue identified when points are tightly clustered also occurs for datasets
containing a dense, narrow band of points, as illustrated in the following example.
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Figure 43:

Static and dynamic bandwidth KDEs with a concentrated band of impact points. Note that

both plots are log base-10 of the estimated probability density.

Figure 43 shows KDEs resulting from a dataset containing a dense narrow band of points. The
static bandwidth KDE demonstrates a typical KDE based on a dataset containing a dense
narrow band of points, and the dynamic bandwidth KDE demonstrates how the KDE can be
modified by applying a variant of the dynamic bandwidth procedure (details provided
below).

Finally, if a dataset contains multiple clusters or bands of points, the bandwidth selection

issues described above do not occur, provided that the clusters or bands are sufficiently
spaced apart. This is demonstrated by Figure 44, below.
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Figure 44: Static bandwidth KDE with a two concentrated bands of impact points
The figure shows two high density impact bands, in adjacent “columns” of grid squares.
There is sufficient variation in the density of impact points in the x-axis to ensure a reasonable

selection of the bandwidth parameter, resulting in a reasonable spread of the probability mass
over the entire impact area.
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As a consequence of the above investigation, a potential process for dynamic bandwidth
selection that addresses the above situation is as follows:
1. Determine the percentage of points in each individual grid square.
2. Ifany of these percentages exceed a certain threshold, then separate the points in the
densest grid square from the dataset and take a weighted combination of the KDEs for
the dense grid square and the remaining points.

3. If none of the percentages in Step 1 exceed the threshold, then determine the
percentage of points in each row and column of grid squares.

4. Ifany of the percentages in Step 3 exceed a certain threshold, then separate the points
in the most dense row or column from the dataset and take a weighted combination of
the KDEs for the dense row or column and the remaining points.

5. If none of the percentages in Step 3 exceed the threshold, then generate a KDE using
the static bandwidth method developed previously in the RSTT project.
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5. KDE Isotropy

5.1 Observations from impact data

Further investigation of the growing collection of RSTT impact data sets has revealed that sub-
optimal kernel density estimates are produced in some interesting cases. As shown in
Figure 45, the two dimensional formula presented in section 2.2.1 produces a good kernel
density estimate for data randomly scattered about the Y axis. In this case, the X and Y
bandwidths are treated independently and correspond to the diagonal bandwidth matrix:
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Figure 45: Diagonal bandwidth matrix KDE for impacts randomly distributed about the X and Y axis

However, in a number of the data sets examined the ground impacts appeared to be randomly
distributed about axes rotated with respect to the X and Y axes. A representative ground
impact distribution is shown in Figure 46. When the diagonal bandwidth matrix is applied in
this case, the kernel density estimate is not as optimal as the example shown in Figure 45. For
the purposes of this discussion, the ground impacts shown in Figure 46 are simply a forty-five
degree rotation of the impacts presented in Figure 45. The KDE in Figure 46 is a less
conservative result than the KDE shown in Figure 45 as several impact points now lie in the
1x107 probability region.
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Figure 46: Diagonal bandwidth matrix KDE for example ground impact distribution

The discovery of cases that are clearly better represented by bandwidths defined about axes
rotated with respect to X and Y has motivated some investigation into using a non-diagonal

bandwidth matrix:
h h
H= X ny
[hyx hy

Defining the terms of the covariance matrix is not a trivial task and has received limited
treatment in the literature. Recent work by Zhang et al. [5, 6] outlines Markov Chain Monte
Carlo algorithms for estimating the bandwidth matrix parameters. Duong et al. [7, 8] discuss
the application of plug-in algorithms, biased cross-validation and smooth cross-validation
algorithms for defining the bandwidth matrix. With all proposed techniques the observed
performance must be balanced against the computational effort required for large data sets.
Based on the observed cases illustrated here, we propose one approach for deriving the terms
of the full bandwidth matrix for guided weapon ground impact data.

5.2 Impact coordinate correlation

The two dimensional formula for f(x, y) presented in the section 2.2.1 is most applicable in

cases where X;and Y;are sampled independently. In reality, the coordinates of the impact are
not independent. The correlation between the X and Y coordinates of the sampled data is
included in the kernel density estimate as follows:

n

f(x,y)=%ZK(x—Xi,y—Yi,H),

i=1
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where H is the full bandwidth matrix:

The kernel, as represented in the above equation, is now two-dimensional and dependent on
the bandwidth operator H. Ideally, H should not be degenerate, which will be the case for real
2D impact data. However, in cases where the determinant is small, the resolution error must
be used to set a minimum value of the bandwidth elements. Note that this problem exists
regardless of what formula is being used.

If the normal distribution represents the kernel, the estimator is the sum of the bivariate
normal distributions:

n

£ 1 1 1(y VA
f(x,y)—mgeXp(—E(x—Xi,y—YﬂHz (X=X, y-Y) j

The matrix H; is the equivalent of the covariance matrix expressed in terms of bandwidth
matrix H. The elements of the matrix H, can be found using the one-dimensional formula
along the principal axes of the distribution and then rotating the matrix back to the original
coordinates. The principal axes of the distribution are the coordinates in which the XY-
correlation is zero and correspond to the eigenvectors of the covariance matrix S:

_izn: (Xi_i)2 (Xi_)z)(Yi_Y_)
-1 i (X, — X)(Yi _Y_) (Y; _Y_)2

The covariance matrix represented in principal axes coordinates is a diagonal matrix
consisting of iy and i, from the XY-independent formula. Suppose that the diagonal terms are
S1 and S; (eigenvalues) and the main eigenvector is (sysy,), then:

S, 0
! =U7su
0 s,
s, -S
where U =( y)
S S

U is the rotation matrix to the principal axes with the properties |U|:1 and

Uut= U(sy - —sy) . The bandwidth calculated along the principal axes can be translated back
to the original coordinate system using:

2
H,=U § 02 u
0 h
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Note that only matrices S and H; are rotated, not the coordinates of the impact points. The
elements h; and h; are calculated as per the one-dimensional case using S; and S, values. If the
value S; is small it should be increased to the resolution error factor (S; cannot be small since it
is the main eigenvalue). A small S; value corresponds to the case where all points lie on aline
or are very close to one.

If the formula from the section 2.2.3.3 is used for calculating bandwidth, then IQR should be
calculated along the principal axes of S. This is done by projecting each point onto the
principal axes via:

(Pini) :(Xi’Yi)U

The new P; coordinates are then used to calculate h; and Q; coordinates to calculate K.
Figure 47 shows the KDE produced using the non-diagonal bandwidth matrix for the example
data first presented in Figure 46. The KDE appears to be more consistent with the expected
result demonstrated in Figure 45 for the non-rotated ground impact data.
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Figure 47: Full bandwidth matrix KDE for example ground impacts

It is possible to predict a distribution that will not be well represented by a KDE generated
using the non-diagonal bandwidth matrix outlined here, as shown in Figure 48. This example
is a hypothetical case that has not been observed in the available data sets. Figure 48 shows
again that clustering (see section 4) can cause the global approach to bandwidth estimation to
produce a non-optimal KDE in some cases. To date, there have not been any identified cases
in the data that result in a less optimal KDE when using the non-diagonal bandwidth matrix
as compared to using a diagonal bandwidth matrix.

52



DSTO-TR-2292

Impact point distribution

oo - < R e T T R

x-axis: Distance from missile launch {m}

B PN e ELCEE EEEEEEEPEE PR PEEEEEEREERE: D RCLEE T LR PR L EEEP R L EELEEr R

-500 250 o | 260 500 750 1000 1250 1500
y-axis: Distance from missile launch (m)

Figure 48: Data set with non-optimal KDE using a non-diagonal bandwidth matrix

5.3 Computational efficiency and accuracy

Calculating the grid values of the estimator f (X, y) using the above formula requires O(nM>)
exponents, where M is the grid size and n is number of impacts. It is possible, however, to
reduce the number of calculations by factorising the exponent in the bivariate normal
distribution. Let us denote the coordinates of k-th impact as (Xi, Yi). The bivariate normal
distribution can then be written in a well known covariance form as:

fxy) =<3 expl(s2,)

where a= L ,
2w O'Xay\/l—,o2
___ 1
21-p%)°
z, = (x- >2(k)2 n (y_Zk)z _ 2p(x=X,)(y-Y,) ,
o, o, 0.0,

and p is defined from S

S ol 0,0,pP
0,0, P o

<
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The expression can be factorised into the following form:

f (Xiv yj') == Fé Bigl) Bi(kZ)BJ(l:(a)

with

2p %Y,
Bigl) = EXp[_ p— j

0.0,

— 2 i
B = exp(ﬂ (% O->2<k) n 2p %Y, J

0,0,

(y; =Y’
B{? =exr{ﬂ St p

y

prk(yj' _Yk)J

0,0,

This form is equivalent to the original covariance form (which can be verified by direct
substitution), but now matrices B® and B® only need to be calculated once for all
combinations, j, and k. This will require about O(2nM) exponent evaluations. This symmetry
is a consequence of the grid being presented as a lattice aligned along X and Y axes and the
bivariate normal distribution being symmetrical relative to its own principal axis. Using the B
matrices, the exponents can now be calculated for O(M*+21nM) terms, which is less than the
OnM’) terms required previously.

There is a numerical side effect to this approach due to limitations in machine precision. In the
original covariance form of the estimator, the exponent is always negative. While it can have a
large absolute value when the test point is far from the impact point under consideration, the
negative value means it has minimal contribution to the sum and so does not introduce
significant numerical error. When using the estimator form containing B matrices, the
exponent can be arbitrarily big: either negative or positive. Evaluation of the exponential can
magnify the numerical error, which does not cancel out after matrix multiplication even if the
result is a small value. This makes direct calculations, i.e. calculating exponents and then
multiplying their values, undesirable.

One possible fix to this problem involves re-defining the exponents in the following way:
InB=p+aq

where a is an arbitrarily selected parameter, g is some integer number and 0< p<a is the

remainder. The product of the exponential terms can then be calculated by multiplying p
terms and summing g terms as the estimator now takes the form:

A

f(xi’ yj) = fij =

[R

n
Py +a0 Py +aGi o P
ze i§ 7% g Pik+a%i g P 89k

N

The parameter a is selected so that finding p and g is fast. After multiplying the p terms, the g
terms are summed to give the factor exp(a)™. All terms of this form can be obtained from a
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pre-calculated table. Theoretically, the sum of the g terms is not bound by any limits.
However, if the extreme lower value of the estimator evaluation is expected to be around 10
it is safe to remove all table entries below 10", for example. On the other hand, the sum
cannot be greater than say, 100/a, otherwise the probability function will exceed 1 by many
orders of magnitude. In practice, if a is chosen to be 10, a table of size 40 is sufficient because it
covers around 40 orders of magnitude in the density function; for example, from 10°*° to 10*°.

Note that the first exponential term in the above formula (B;™) should not be factored out of
the summation. This is to ensure that the correct cancellations occur during the calculation of
each product.

5.4 Conclusion

Below is the list of steps necessary for the calculation of the estimation function (without the
numerical optimisation discussed above):

e Compute the matrix S

¢ Find the main eigenvector (this defines the rotation matrix U)

e Find both eigenvalues S; and S; using U or directly from step 2 (correct S; if necessary)

¢ Find the two bandwidth values F; and h; using the one-dimensional formula

e Compute matrix H;

e Find H;™" and det(H,) (this is possible because det(S)#0)

e Build the estimation function f(x,y) using the bivariate normal distribution.

The final density function is automatically normalised to 1.

This approach has been shown to offer better kernel density estimates than the diagonal
bandwidth matrix for a number of cases found in the data. As there have not yet been any
cases observed that will be less optimally predicted by the non-diagonal bandwidth matrix
outlined in this section (when compared to predictions using the diagonal bandwidth matrix),
the approach has been adopted for all RSTT guided weapon ground impact data. Our analysis
is based on observed cases in the available data, but it is not exhaustive and highlights that the
prediction of non-diagonal bandwidth matrices is a challenging and potentially fruitful area of
research.
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6. Conclusion and areas for further research

In this report we have investigated techniques for analysing simulation data of missile impact
distributions.

While we have successfully addressed the fundamental issue of defining techniques of
potential value in developing range safety templates, it is clear from the analysis that there are
many factors to be considered in generating an accurate statistical model.

In particular, there can be no “blind” fully automated process for producing a statistical
estimate that is appropriate for any and every dataset that may arise. It is necessary to ensure
that appropriate statistical inputs have been used, and that the results obtained are consistent
both with the data and with what might reasonably be expected in reality. Therefore, any
procedure for generating a kernel density estimate must be reviewed by a panel of experts,
including both statisticians and weapons experts.

Kernel Density Estimation appears to provide a good basis for deriving range safety templates
or WDA s from discrete simulated ground impact points.

6.1 Outcomes

The R&D undertaken by CDCIN and DSTO has:
1. Qualitatively described the features of impact distribution data that may affect
subsequent statistical modelling.

2. Defined atechnique, specifically, the use of kernel density estimation, for providing a
statistical model of a specific missile impact data set which estimates the probability
density function of the impact distribution. The solution proposed here is purely data
analytic and as such does not allow for the incorporation of any substantive
knowledge.

3. Defined atechnique for combining kernel density estimates corresponding to different
failure modes within a single operational scenario.

4. Defined a technique for incorporating information on missile Maximum Energy
Boundaries into the analysis so as to refine the impact zone probability density
function.

5. Defined a technique for using the probability density function together with
population density information to obtain estimated injury rates for a given scenario.

6. Defined a technique for using the probability density function together with range
boundary information to obtain an estimate for a missile leaving a given range.

7. Defined a technique for using the probability density function to determine a
conservative, convex safety exclusion zone with given probability of the missile
leaving the zone.

8. Defined an approximate technique for defining a conservative exclusion zone derived
from probability density functions of different scenarios.
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9. Found that KDE resolutions beyond 16 x 16 and 32 x 32 do not provide significantly
more accurate information and hence 16 x 16 or 32 x 32 resolutions appear to be
suitable for the development of Range Safety Templates.

10. Found that at least 600 observations (impact data points) should be used in generating
KDEs for a given scenario.

11. Identified situations in which the Kernel Density Estimation process is not robust,
generally when tight clusters of data points occur within the data set. In such cases the
bandwidth parameters automatically generated by the process tend to be very small
and the KDE generated consequently “erratic”. This report has suggested one method
of dynamic bandwidth calculation to improve the PDF for clustered or non-normal
ground impact distributions.

12. Described a covariant form of the Kernel Density Estimator for two-dimensional data
that robustly predicts the ground impact probability function for a number of
available data sets.

13. Outlined a numerical approach to ensure computationally accurate and efficient
results are obtained when using the kernel density estimate technique with real impact
data.

6.2 Further research

There are a number of areas in which further research should be carried out in order to make
the analysis more robust to the range of potential operational scenarios. The major areas
include:

1. The use of kernel density estimation requires selection of certain so-called
“bandwidth” parameters. These parameters are the key to controlling the nature of the
overall estimate created. In the analysis provided, well-known rules of thumb have
been employed, but have been shown to have some potential limitations which should
be addressed. Investigation of the implementation of a more general dynamic or
adaptive bandwidth method may yield positive results.

2. The number of simulated data points required to generate “sufficiently good” kernel
density estimates should be investigated further in light of changes to bandwidth
selection algorithms. Additionally, a greater range of impact distribution scenarios
should be investigated using a greater number of simulated points.

3. Without significantly greater examination of typical data related to missile impact
distributions we are unable at this time to verify that creating a convex exclusion zone
from individual scenario exclusion zones will provide a conservative exclusion zone
for a scenario whose input parameters lie between the input parameters of the known
scenarios. Such an investigation should be carried out in order to determine the full
limitations of the defined procedure.

4. Further development of the Exclusion Zone difference to measure the difference
between the convex exclusion zones, rather than the raw exclusion zones, for the
purposes of comparing variations in KDE algorithms and data sizes.
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5. The application of a non-diagonal bandwidth matrix in the kernel density estimation
has been shown to be quite useful in a number of observed ground impact data sets.
Further exploration of methods for predicting the bandwidth matrix parameters might

identify an approach that ensures the optimal kernel density estimate is obtained in
most cases.
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Appendix A: Data files provided by DSTO for the
analysis described in this report

Filename Size | Description
faultset_all_actuators_zeroed_ggm1-10000_1.csv 1.698 | 10,000 observations corresponding to failure mode 1
MB (zero deflection) for the spatial scenario chosen to
illustrate the techniques proposed in this report.
faultset_all_actuators_zeroed_ggm1-10000_2.csv 1.658 | 10,000 observations corresponding to failure mode 1
MB (zero deflection) for a particular spatial scenario.
faultset_all_actuators_zeroed_ggm1-10000_3.csv 1.704 | 10,000 observations corresponding to failure mode 1
MB (zero deflection) for a particular spatial scenario.
faultset_all_actuators_zeroed_ggm1-10000_4.csv 1.679 | 10,000 observations corresponding to failure mode 1
MB (zero deflection) for a particular spatial scenario.
faultset_all_actuators_zeroed_ggm1-10000_5.csv 1.709 | 10,000 observations corresponding to failure mode 1
MB (zero deflection) for a particular spatial scenario.
faultset_all_actuators_zeroed_ggm1-20000_6.csv 3.396 | Exactly the same as
MB faultset_all_actuators_zeroed_ggm1-10000_1.csv with a
further 10,000 observations added at the beginning
(total 20,000 observations).
faultset_single_actuator_freeze_ggm1-20000_3.csv 3.507 | 20,000 observations corresponding to a different failure
MB mode (single actuator freeze) for a particular spatial
scenario.
nofault_ggm_000_1-20000.csv 3.427 | 20,000 observations corresponding to failure mode 0
MB (no failure) for the same spatial scenario as
faultset_single_actuator_freeze_ggm1-20000_3.csv and
faultset_all_actuators_zeroed_ggm1-10000_1.csv.
faultset_all_actuators_zeroed_ggm_007.1-50000.csv | 10.038 | 10,000 for each of five different spatial scenarios which
MB are all identical except for the initial x-distance between
the launcher and target.
faultset_all_actuators_zeroed_ggm_008.1-5000.csv 0.99 | A further 1000 observations at each of the five scenarios
MB in faultset_all_actuators_zeroed_ggm_007.1-50000.csv
corresponding to a different interval of the failure time.
faultset_all_actuators_zeroed_ggm_001.1- 94.664 | 10,000 observations at each of 48 different spatial
480000.csv MB scenarios. These scenarios consist of all possible
combinations of six different initial positions and eight
different initial directions of the target.
faultset_all_actuators_zeroed_ggm_009.1-50000.csv 9.522 | 50,000 observations at a single spatial scenario. This
MB scenario is also symmetric to the scenario in
faultset_all_actuators_zeroed_ggm1-10000_1.csv.
faultset_all_actuators_zeroed_ggm_000_1-10000.csv 1.66 Exactly the same as
MB faultset_all_actuators_zeroed_ggm1-10000_1.csv.
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Appendix B: Typical scatter plots and kernel density
estimates for samples of various sizes
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Figure 49: Scatterplot for the dataset of 50,000 observations from the scenario used to investigate the
number of points required
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Figure 50: Kernel density estimate for the dataset of 50,000 observations from the scenario used to
investigate the number of points required
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Conservative Convex Exclusion Zone
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Figure 51: 10-¢ exclusion zone for the dataset of 50,000 observations from the scenario used to
investigate the number of points required
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Figure 52: Typical scatterplot for a sample of size 5000 from the scenario used to investigate the
number of points required
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Impact Point Distribution

-5000 0 5000 10000 15000
| | |

Distance from missile launch {

-10000
|

-15000
|

0 5000 10000 15000 20000

Distance from missile launch {m)

Figure 53: Typical scatterplot for a sample of size 10,000 from the scenario used to investigate the
number of points required
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Figure 54: Typical scatterplot for a sample of size 15,000 from the scenario used to investigate the
number of points required
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Impact Point Distribution

-5000 0 5000 10000 15000
| | | |

Distance from missile launch (m)

-10000
|

-15000
|

0 5000 10000 15000 20000

Distance from missile launch {m)

Figure 55: Typical scatterplot for a sample of size 20,000 from the scenario used to investigate the
number of points required
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Figure 56: Typical scatterplot for a sample of size 25,000 from the scenario used to investigate the
number of points required
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Impact Point Distribution
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Figure 57: Typical scatterplot for a sample of size 30,000 from the scenario used to investigate the
number of points required
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Figure 58: Typical kernel density estimate for a sample of size 5000 from the scenario used to
investigate the number of points required
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Log10 of Kernel Density Estimate
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Figure 59: Typical kernel density estimate for a sample of size 10,000 from the scenario used to
investigate the number of points required
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Figure 60: Typical kernel density estimate for a sample of size 15,000 from the scenario used to
investigate the number of points required
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Log10 of Kernel Density Estimate
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Figure 61: Typical kernel density estimate for a sample of size 20,000 from the scenario used to
investigate the number of points required
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Figure 62: Typical kernel density estimate for a sample of size 25,000 from the scenario used to
investigate the number of points required
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Log10 of Kernel Density Estimate
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Figure 63: Typical kernel density estimate for a sample of size 30,000 from the scenario used to
investigate the number of points required
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Figure 64: 10-6 exclusion zone based on typical kernel density estimate for a sample of size 5000 from
the scenario used to investigate the number of points required

70



DSTO-TR-2292

Conservative Convex Exclusion Zone
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Figure 65: 106 exclusion zone based on typical kernel density estimate for a sample of size 10,000 from
the scenario used to investigate the number of points required
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Figure 66: 10-6 exclusion zone based on typical kernel density estimate for a sample of size 15,000 from
the scenario used to investigate the number of points required

71



DSTO-TR-2292

Conservative Convex Exclusion Zone
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Figure 67: 10-¢ exclusion zone based on typical kernel density estimate for a sample of size 20,000 from
the scenario used to investigate the number of points required
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Figure 68: 10-¢ exclusion zone based on typical kernel density estimate for a sample of size 25,000 from
the scenario used to investigate the number of points required
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Conservative Convex Exclusion Zone
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Figure 69: 10-¢ exclusion zone based on typical kernel density estimate for a sample of size 30,000 from
the scenario used to investigate the number of points required
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